163 lines
5.9 KiB
Python
163 lines
5.9 KiB
Python
import pydicom
|
|
from pydicom.dataset import Dataset
|
|
from pydicom.dataset import FileMetaDataset
|
|
from pydicom.uid import MediaStorageDirectoryStorage, EncapsulatedPDFStorage, generate_uid
|
|
import matplotlib
|
|
matplotlib.use("Agg") # Use non-GUI backend to avoid Tkinter issues
|
|
import matplotlib.pyplot as plt # Now import pyplot
|
|
from reportlab.pdfgen import canvas
|
|
from datetime import datetime, date
|
|
|
|
|
|
def extract_measurements(sr):
|
|
"""Extracts measurement annotations from an SR."""
|
|
measurements = []
|
|
probabilities = []
|
|
|
|
if "ContentSequence" in sr:
|
|
for itemLevel1 in sr.ContentSequence:
|
|
if len(itemLevel1.ConceptNameCodeSequence) == 1:
|
|
if itemLevel1.ConceptNameCodeSequence[0].CodeMeaning == "Imaging Measurements":
|
|
for itemLevel2 in itemLevel1.ContentSequence:
|
|
for itemLevel3 in itemLevel2.ContentSequence:
|
|
if itemLevel3.ValueType == "SCOORD":
|
|
measurements.append(itemLevel3.GraphicData)
|
|
elif itemLevel3.ValueType == "NUM":
|
|
if len(itemLevel3.MeasuredValueSequence) == 1:
|
|
probabilities.append(itemLevel3.MeasuredValueSequence[0].NumericValue)
|
|
return measurements, probabilities
|
|
|
|
|
|
def overlay_measurements(image, measurements, probabilities):
|
|
"""Overlays extracted measurements onto the mammography image."""
|
|
fig, ax = plt.subplots()
|
|
ax.imshow(image, cmap='gray')
|
|
|
|
# Draw each polyline
|
|
for i in range(0, len(measurements), 1):
|
|
measurement = measurements[i]
|
|
x = measurement[0::2] # Extract x-coordinates (every other value)
|
|
y = measurement[1::2] # Extract y-coordinates (every other value)
|
|
ax.plot(x, y, 'lime', linewidth=1) # Plot the entire polyline at once
|
|
ax.text(x[-3] + 100, y[-3], f"{probabilities[i]:.2f} %", color='lime', fontsize=8)
|
|
|
|
ax.axis("off")
|
|
|
|
# Save the overlay as an image
|
|
plt.savefig("temp.png", bbox_inches='tight', pad_inches=0)
|
|
plt.close(fig)
|
|
|
|
|
|
def create_pdf(temp_image_path, measurements, sr, pdf_path):
|
|
"""Creates a PDF with the mammography image and extracted measurements."""
|
|
c = canvas.Canvas(pdf_path)
|
|
|
|
# Set font for the title
|
|
c.setFont("Helvetica-Bold", 16)
|
|
|
|
# Get page width to center the title
|
|
page_width = 595 # Default A4 width in points
|
|
title = "Mammography Report"
|
|
c.drawCentredString(page_width / 2, 820, title) # Adjust Y-position as needed
|
|
|
|
# Reset font for other text
|
|
c.setFont("Helvetica", 12)
|
|
|
|
# Add patient info to the PDF
|
|
c.drawString(70, 800, f"Patient ID: {sr.PatientID}")
|
|
c.drawString(70, 785, f"Patient name: {sr.PatientName}")
|
|
c.drawString(70, 770, f"Patient birth date: {formateted_datetime(sr.PatientBirthDate)}")
|
|
c.drawString(70, 755, f"Patient sex: {sr.PatientSex}")
|
|
c.drawString(70, 730, f"Study date: {formateted_datetime(sr.StudyDate, sr.StudyTime)}")
|
|
c.drawString(70, 715, f"Report date: {formateted_datetime(sr.SeriesDate, sr.SeriesTime)}")
|
|
c.drawString(70, 700, f"Referring physician: {sr.ReferringPhysicianName}")
|
|
|
|
# Add the image to the PDF
|
|
c.drawImage(temp_image_path, 70, 300)
|
|
|
|
c.save()
|
|
|
|
# Convert DICOM date
|
|
def formateted_datetime(dicom_date, dicom_time = None):
|
|
|
|
if dicom_date is None or dicom_date == '':
|
|
return ''
|
|
|
|
# Convert DICOM date
|
|
formatted_date = datetime.strptime(dicom_date, "%Y%m%d").strftime("%Y-%m-%d")
|
|
|
|
if dicom_time is None or dicom_time == '':
|
|
return formatted_date
|
|
|
|
# Convert DICOM time (handling optional fractions of a second)
|
|
if "." in dicom_time:
|
|
formatted_time = datetime.strptime(dicom_time, "%H%M%S.%f").strftime("%H:%M:%S.%f")[:-3] # Keep milliseconds
|
|
else:
|
|
formatted_time = datetime.strptime(dicom_time, "%H%M%S").strftime("%H:%M:%S")
|
|
|
|
# Combined datetime
|
|
return f"{formatted_date} {formatted_time}"
|
|
|
|
def create_dcm_pdf(sr, pdf_path):
|
|
ds = Dataset()
|
|
|
|
# Add general DICOM metadata
|
|
ds.PatientName = sr.PatientName
|
|
ds.PatientID = sr.PatientID
|
|
ds.PatientBirthDate = sr.PatientBirthDate
|
|
ds.PatientSex = sr.PatientSex
|
|
|
|
ds.StudyInstanceUID = sr.StudyInstanceUID
|
|
ds.StudyDate = sr.StudyDate
|
|
ds.StudyTime = sr.StudyTime
|
|
ds.AccessionNumber = sr.AccessionNumber
|
|
ds.ReferringPhysicianName = sr.ReferringPhysicianName
|
|
ds.StudyID = sr.StudyID
|
|
|
|
ds.SeriesInstanceUID = generate_uid()
|
|
ds.SeriesDate = sr.SeriesDate
|
|
ds.SeriesTime = sr.SeriesTime
|
|
ds.SeriesNumber = 1
|
|
ds.Modality = "DOC"
|
|
|
|
ds.Manufacturer = "MammographyAI"
|
|
ds.ConversionType = "DI"
|
|
|
|
ds.SOPInstanceUID = generate_uid()
|
|
ds.SOPClassUID = EncapsulatedPDFStorage
|
|
|
|
# Open the PDF file and read it as binary data
|
|
with open(pdf_path, 'rb') as f:
|
|
pdf_data = f.read()
|
|
|
|
# Add the EncapsulatedDocument (PDF content) to the DICOM dataset
|
|
ds.ContentDate = ds.SeriesDate
|
|
ds.ContentTime = ds.SeriesTime
|
|
ds.AcquisitionDateTime = ""
|
|
ds.InstanceNumber = 1
|
|
ds.BurnedInAnnotation = "YES"
|
|
ds.DocumentTitle = ""
|
|
ds.EncapsulatedDocument = pdf_data
|
|
ds.MIMETypeOfEncapsulatedDocument = "application/pdf"
|
|
|
|
# Create a FileMetaDataset for DICOM file meta information
|
|
file_meta = FileMetaDataset()
|
|
file_meta.MediaStorageSOPClassUID = EncapsulatedPDFStorage
|
|
file_meta.MediaStorageSOPInstanceUID = ds.SOPInstanceUID
|
|
file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian
|
|
file_meta.FileMetaInformationGroupLength = 0
|
|
|
|
# Assign the file meta information to the dataset
|
|
ds.file_meta = file_meta
|
|
|
|
# Ensure preamble and "DICM" prefix is included
|
|
ds.is_implicit_VR = True # Set to explicit VR
|
|
ds.is_little_endian = True # Set to little endian
|
|
|
|
return ds
|
|
|
|
def create(image, sr):
|
|
measurements, probabilities = extract_measurements(sr)
|
|
overlay_measurements(image, measurements, probabilities)
|
|
create_pdf("temp.png", measurements, sr, "temp.pdf")
|
|
return create_dcm_pdf(sr, "temp.pdf",) |