Generate DICOM PDF

This commit is contained in:
Aljaž Gerečnik 2025-02-24 18:20:48 +01:00
parent 1ac99bdcfa
commit 2110aac355
4 changed files with 185 additions and 4 deletions

View File

@ -95,7 +95,14 @@ def apply(retina_net, dicom,
instance_number = 1 instance_number = 1
) )
sr_object.StudyDate = dicom.StudyDate
sr_object.StudyTime = dicom.StudyTime
sr_object.SeriesDate = datetime.now().strftime("%Y%m%d") sr_object.SeriesDate = datetime.now().strftime("%Y%m%d")
sr_object.SeriesTime = datetime.now().strftime("%H%M%S") sr_object.SeriesTime = datetime.now().strftime("%H%M%S")
sr_object.PatientID = dicom.PatientID
sr_object.PatientName = dicom.PatientName
sr_object.PatientSex = dicom.PatientSex
sr_object.PatientBirthDate = dicom.PatientBirthDate
sr_object.ReferringPhysicianName = sr_object.ReferringPhysicianName
return sr_object return sr_object

163
dicom_sr_to_pdf.py Normal file
View File

@ -0,0 +1,163 @@
import pydicom
from pydicom.dataset import Dataset
from pydicom.dataset import FileMetaDataset
from pydicom.uid import MediaStorageDirectoryStorage, EncapsulatedPDFStorage, generate_uid
import matplotlib
matplotlib.use("Agg") # Use non-GUI backend to avoid Tkinter issues
import matplotlib.pyplot as plt # Now import pyplot
from reportlab.pdfgen import canvas
from datetime import datetime, date
def extract_measurements(sr):
"""Extracts measurement annotations from an SR."""
measurements = []
probabilities = []
if "ContentSequence" in sr:
for itemLevel1 in sr.ContentSequence:
if len(itemLevel1.ConceptNameCodeSequence) == 1:
if itemLevel1.ConceptNameCodeSequence[0].CodeMeaning == "Imaging Measurements":
for itemLevel2 in itemLevel1.ContentSequence:
for itemLevel3 in itemLevel2.ContentSequence:
if itemLevel3.ValueType == "SCOORD":
measurements.append(itemLevel3.GraphicData)
elif itemLevel3.ValueType == "NUM":
if len(itemLevel3.MeasuredValueSequence) == 1:
probabilities.append(itemLevel3.MeasuredValueSequence[0].NumericValue)
return measurements, probabilities
def overlay_measurements(image, measurements, probabilities):
"""Overlays extracted measurements onto the mammography image."""
fig, ax = plt.subplots()
ax.imshow(image, cmap='gray')
# Draw each polyline
for i in range(0, len(measurements), 1):
measurement = measurements[i]
x = measurement[0::2] # Extract x-coordinates (every other value)
y = measurement[1::2] # Extract y-coordinates (every other value)
ax.plot(x, y, 'lime', linewidth=1) # Plot the entire polyline at once
ax.text(x[-3] + 100, y[-3], f"{probabilities[i]:.2f} %", color='lime', fontsize=8)
ax.axis("off")
# Save the overlay as an image
plt.savefig("temp.png", bbox_inches='tight', pad_inches=0)
plt.close(fig)
def create_pdf(temp_image_path, measurements, sr, pdf_path):
"""Creates a PDF with the mammography image and extracted measurements."""
c = canvas.Canvas(pdf_path)
# Set font for the title
c.setFont("Helvetica-Bold", 16)
# Get page width to center the title
page_width = 595 # Default A4 width in points
title = "Mammography Report"
c.drawCentredString(page_width / 2, 820, title) # Adjust Y-position as needed
# Reset font for other text
c.setFont("Helvetica", 12)
# Add patient info to the PDF
c.drawString(70, 800, f"Patient ID: {sr.PatientID}")
c.drawString(70, 785, f"Patient name: {sr.PatientName}")
c.drawString(70, 770, f"Patient birth date: {formateted_datetime(sr.PatientBirthDate)}")
c.drawString(70, 755, f"Patient sex: {sr.PatientSex}")
c.drawString(70, 730, f"Study date: {formateted_datetime(sr.StudyDate, sr.StudyTime)}")
c.drawString(70, 715, f"Report date: {formateted_datetime(sr.SeriesDate, sr.SeriesTime)}")
c.drawString(70, 700, f"Referring physician: {sr.ReferringPhysicianName}")
# Add the image to the PDF
c.drawImage(temp_image_path, 70, 300)
c.save()
# Convert DICOM date
def formateted_datetime(dicom_date, dicom_time = None):
if dicom_date is None or dicom_date == '':
return ''
# Convert DICOM date
formatted_date = datetime.strptime(dicom_date, "%Y%m%d").strftime("%Y-%m-%d")
if dicom_time is None or dicom_time == '':
return formatted_date
# Convert DICOM time (handling optional fractions of a second)
if "." in dicom_time:
formatted_time = datetime.strptime(dicom_time, "%H%M%S.%f").strftime("%H:%M:%S.%f")[:-3] # Keep milliseconds
else:
formatted_time = datetime.strptime(dicom_time, "%H%M%S").strftime("%H:%M:%S")
# Combined datetime
return f"{formatted_date} {formatted_time}"
def create_dcm_pdf(sr, pdf_path):
ds = Dataset()
# Add general DICOM metadata
ds.PatientName = sr.PatientName
ds.PatientID = sr.PatientID
ds.PatientBirthDate = sr.PatientBirthDate
ds.PatientSex = sr.PatientSex
ds.StudyInstanceUID = sr.StudyInstanceUID
ds.StudyDate = sr.StudyDate
ds.StudyTime = sr.StudyTime
ds.AccessionNumber = sr.AccessionNumber
ds.ReferringPhysicianName = sr.ReferringPhysicianName
ds.StudyID = sr.StudyID
ds.SeriesInstanceUID = generate_uid()
ds.SeriesDate = sr.SeriesDate
ds.SeriesTime = sr.SeriesTime
ds.SeriesNumber = 1
ds.Modality = "DOC"
ds.Manufacturer = "MammographyAI"
ds.ConversionType = "DI"
ds.SOPInstanceUID = generate_uid()
ds.SOPClassUID = EncapsulatedPDFStorage
# Open the PDF file and read it as binary data
with open(pdf_path, 'rb') as f:
pdf_data = f.read()
# Add the EncapsulatedDocument (PDF content) to the DICOM dataset
ds.ContentDate = ds.SeriesDate
ds.ContentTime = ds.SeriesTime
ds.AcquisitionDateTime = ""
ds.InstanceNumber = 1
ds.BurnedInAnnotation = "YES"
ds.DocumentTitle = ""
ds.EncapsulatedDocument = pdf_data
ds.MIMETypeOfEncapsulatedDocument = "application/pdf"
# Create a FileMetaDataset for DICOM file meta information
file_meta = FileMetaDataset()
file_meta.MediaStorageSOPClassUID = EncapsulatedPDFStorage
file_meta.MediaStorageSOPInstanceUID = ds.SOPInstanceUID
file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian
file_meta.FileMetaInformationGroupLength = 0
# Assign the file meta information to the dataset
ds.file_meta = file_meta
# Ensure preamble and "DICM" prefix is included
ds.is_implicit_VR = True # Set to explicit VR
ds.is_little_endian = True # Set to little endian
return ds
def create(image, sr):
measurements, probabilities = extract_measurements(sr)
overlay_measurements(image, measurements, probabilities)
create_pdf("temp.png", measurements, sr, "temp.pdf")
return create_dcm_pdf(sr, "temp.pdf",)

View File

@ -100,6 +100,7 @@ import pydicom
sys.path.append(os.path.join(SCRIPT_DIR, '..')) sys.path.append(os.path.join(SCRIPT_DIR, '..'))
import model import model
import dicom_sr import dicom_sr
import dicom_sr_to_pdf
orthanc.LogWarning('Loading the RetinaNet model for mammography') orthanc.LogWarning('Loading the RetinaNet model for mammography')
my_retina_net = model.load_retina_net() my_retina_net = model.load_retina_net()
@ -126,6 +127,7 @@ def execute_inference(output, uri, **request):
output.SendHttpStatusCode(400) output.SendHttpStatusCode(400)
else: else:
result = dicom_sr.apply(my_retina_net, dicom, minimum_score=0.2) result = dicom_sr.apply(my_retina_net, dicom, minimum_score=0.2)
pdf = dicom_sr_to_pdf.create(dicom.pixel_array, result)
with io.BytesIO() as f: with io.BytesIO() as f:
pydicom.dcmwrite(f, result) pydicom.dcmwrite(f, result)
@ -134,4 +136,11 @@ def execute_inference(output, uri, **request):
output.AnswerBuffer(orthanc.RestApiPost('/instances', content), 'application/json') output.AnswerBuffer(orthanc.RestApiPost('/instances', content), 'application/json')
with io.BytesIO() as f:
pydicom.dcmwrite(f, pdf)
f.seek(0)
content = f.read()
output.AnswerBuffer(orthanc.RestApiPost('/instances', content), 'application/json')
orthanc.RegisterRestCallback('/mammography-apply', execute_inference) orthanc.RegisterRestCallback('/mammography-apply', execute_inference)

View File

@ -1,7 +1,9 @@
highdicom==0.22.0 highdicom==0.22.0
numpy==2.1.0 numpy==1.24.0
opencv-python==4.10.0.84 opencv-python==4.10.0.84
pydicom==2.4.4 pydicom==2.4.4
torch==2.3.0 torch==2.4.0
torchaudio==2.3.0 torchaudio==2.4.0
torchvision==0.18.0 torchvision==0.19.0
reportlab==4.3.1
matplotlib==3.10.0