Generate DICOM PDF
This commit is contained in:
parent
1ac99bdcfa
commit
2110aac355
@ -95,7 +95,14 @@ def apply(retina_net, dicom,
|
||||
instance_number = 1
|
||||
)
|
||||
|
||||
sr_object.StudyDate = dicom.StudyDate
|
||||
sr_object.StudyTime = dicom.StudyTime
|
||||
sr_object.SeriesDate = datetime.now().strftime("%Y%m%d")
|
||||
sr_object.SeriesTime = datetime.now().strftime("%H%M%S")
|
||||
sr_object.PatientID = dicom.PatientID
|
||||
sr_object.PatientName = dicom.PatientName
|
||||
sr_object.PatientSex = dicom.PatientSex
|
||||
sr_object.PatientBirthDate = dicom.PatientBirthDate
|
||||
sr_object.ReferringPhysicianName = sr_object.ReferringPhysicianName
|
||||
|
||||
return sr_object
|
||||
|
||||
163
dicom_sr_to_pdf.py
Normal file
163
dicom_sr_to_pdf.py
Normal file
@ -0,0 +1,163 @@
|
||||
import pydicom
|
||||
from pydicom.dataset import Dataset
|
||||
from pydicom.dataset import FileMetaDataset
|
||||
from pydicom.uid import MediaStorageDirectoryStorage, EncapsulatedPDFStorage, generate_uid
|
||||
import matplotlib
|
||||
matplotlib.use("Agg") # Use non-GUI backend to avoid Tkinter issues
|
||||
import matplotlib.pyplot as plt # Now import pyplot
|
||||
from reportlab.pdfgen import canvas
|
||||
from datetime import datetime, date
|
||||
|
||||
|
||||
def extract_measurements(sr):
|
||||
"""Extracts measurement annotations from an SR."""
|
||||
measurements = []
|
||||
probabilities = []
|
||||
|
||||
if "ContentSequence" in sr:
|
||||
for itemLevel1 in sr.ContentSequence:
|
||||
if len(itemLevel1.ConceptNameCodeSequence) == 1:
|
||||
if itemLevel1.ConceptNameCodeSequence[0].CodeMeaning == "Imaging Measurements":
|
||||
for itemLevel2 in itemLevel1.ContentSequence:
|
||||
for itemLevel3 in itemLevel2.ContentSequence:
|
||||
if itemLevel3.ValueType == "SCOORD":
|
||||
measurements.append(itemLevel3.GraphicData)
|
||||
elif itemLevel3.ValueType == "NUM":
|
||||
if len(itemLevel3.MeasuredValueSequence) == 1:
|
||||
probabilities.append(itemLevel3.MeasuredValueSequence[0].NumericValue)
|
||||
return measurements, probabilities
|
||||
|
||||
|
||||
def overlay_measurements(image, measurements, probabilities):
|
||||
"""Overlays extracted measurements onto the mammography image."""
|
||||
fig, ax = plt.subplots()
|
||||
ax.imshow(image, cmap='gray')
|
||||
|
||||
# Draw each polyline
|
||||
for i in range(0, len(measurements), 1):
|
||||
measurement = measurements[i]
|
||||
x = measurement[0::2] # Extract x-coordinates (every other value)
|
||||
y = measurement[1::2] # Extract y-coordinates (every other value)
|
||||
ax.plot(x, y, 'lime', linewidth=1) # Plot the entire polyline at once
|
||||
ax.text(x[-3] + 100, y[-3], f"{probabilities[i]:.2f} %", color='lime', fontsize=8)
|
||||
|
||||
ax.axis("off")
|
||||
|
||||
# Save the overlay as an image
|
||||
plt.savefig("temp.png", bbox_inches='tight', pad_inches=0)
|
||||
plt.close(fig)
|
||||
|
||||
|
||||
def create_pdf(temp_image_path, measurements, sr, pdf_path):
|
||||
"""Creates a PDF with the mammography image and extracted measurements."""
|
||||
c = canvas.Canvas(pdf_path)
|
||||
|
||||
# Set font for the title
|
||||
c.setFont("Helvetica-Bold", 16)
|
||||
|
||||
# Get page width to center the title
|
||||
page_width = 595 # Default A4 width in points
|
||||
title = "Mammography Report"
|
||||
c.drawCentredString(page_width / 2, 820, title) # Adjust Y-position as needed
|
||||
|
||||
# Reset font for other text
|
||||
c.setFont("Helvetica", 12)
|
||||
|
||||
# Add patient info to the PDF
|
||||
c.drawString(70, 800, f"Patient ID: {sr.PatientID}")
|
||||
c.drawString(70, 785, f"Patient name: {sr.PatientName}")
|
||||
c.drawString(70, 770, f"Patient birth date: {formateted_datetime(sr.PatientBirthDate)}")
|
||||
c.drawString(70, 755, f"Patient sex: {sr.PatientSex}")
|
||||
c.drawString(70, 730, f"Study date: {formateted_datetime(sr.StudyDate, sr.StudyTime)}")
|
||||
c.drawString(70, 715, f"Report date: {formateted_datetime(sr.SeriesDate, sr.SeriesTime)}")
|
||||
c.drawString(70, 700, f"Referring physician: {sr.ReferringPhysicianName}")
|
||||
|
||||
# Add the image to the PDF
|
||||
c.drawImage(temp_image_path, 70, 300)
|
||||
|
||||
c.save()
|
||||
|
||||
# Convert DICOM date
|
||||
def formateted_datetime(dicom_date, dicom_time = None):
|
||||
|
||||
if dicom_date is None or dicom_date == '':
|
||||
return ''
|
||||
|
||||
# Convert DICOM date
|
||||
formatted_date = datetime.strptime(dicom_date, "%Y%m%d").strftime("%Y-%m-%d")
|
||||
|
||||
if dicom_time is None or dicom_time == '':
|
||||
return formatted_date
|
||||
|
||||
# Convert DICOM time (handling optional fractions of a second)
|
||||
if "." in dicom_time:
|
||||
formatted_time = datetime.strptime(dicom_time, "%H%M%S.%f").strftime("%H:%M:%S.%f")[:-3] # Keep milliseconds
|
||||
else:
|
||||
formatted_time = datetime.strptime(dicom_time, "%H%M%S").strftime("%H:%M:%S")
|
||||
|
||||
# Combined datetime
|
||||
return f"{formatted_date} {formatted_time}"
|
||||
|
||||
def create_dcm_pdf(sr, pdf_path):
|
||||
ds = Dataset()
|
||||
|
||||
# Add general DICOM metadata
|
||||
ds.PatientName = sr.PatientName
|
||||
ds.PatientID = sr.PatientID
|
||||
ds.PatientBirthDate = sr.PatientBirthDate
|
||||
ds.PatientSex = sr.PatientSex
|
||||
|
||||
ds.StudyInstanceUID = sr.StudyInstanceUID
|
||||
ds.StudyDate = sr.StudyDate
|
||||
ds.StudyTime = sr.StudyTime
|
||||
ds.AccessionNumber = sr.AccessionNumber
|
||||
ds.ReferringPhysicianName = sr.ReferringPhysicianName
|
||||
ds.StudyID = sr.StudyID
|
||||
|
||||
ds.SeriesInstanceUID = generate_uid()
|
||||
ds.SeriesDate = sr.SeriesDate
|
||||
ds.SeriesTime = sr.SeriesTime
|
||||
ds.SeriesNumber = 1
|
||||
ds.Modality = "DOC"
|
||||
|
||||
ds.Manufacturer = "MammographyAI"
|
||||
ds.ConversionType = "DI"
|
||||
|
||||
ds.SOPInstanceUID = generate_uid()
|
||||
ds.SOPClassUID = EncapsulatedPDFStorage
|
||||
|
||||
# Open the PDF file and read it as binary data
|
||||
with open(pdf_path, 'rb') as f:
|
||||
pdf_data = f.read()
|
||||
|
||||
# Add the EncapsulatedDocument (PDF content) to the DICOM dataset
|
||||
ds.ContentDate = ds.SeriesDate
|
||||
ds.ContentTime = ds.SeriesTime
|
||||
ds.AcquisitionDateTime = ""
|
||||
ds.InstanceNumber = 1
|
||||
ds.BurnedInAnnotation = "YES"
|
||||
ds.DocumentTitle = ""
|
||||
ds.EncapsulatedDocument = pdf_data
|
||||
ds.MIMETypeOfEncapsulatedDocument = "application/pdf"
|
||||
|
||||
# Create a FileMetaDataset for DICOM file meta information
|
||||
file_meta = FileMetaDataset()
|
||||
file_meta.MediaStorageSOPClassUID = EncapsulatedPDFStorage
|
||||
file_meta.MediaStorageSOPInstanceUID = ds.SOPInstanceUID
|
||||
file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian
|
||||
file_meta.FileMetaInformationGroupLength = 0
|
||||
|
||||
# Assign the file meta information to the dataset
|
||||
ds.file_meta = file_meta
|
||||
|
||||
# Ensure preamble and "DICM" prefix is included
|
||||
ds.is_implicit_VR = True # Set to explicit VR
|
||||
ds.is_little_endian = True # Set to little endian
|
||||
|
||||
return ds
|
||||
|
||||
def create(image, sr):
|
||||
measurements, probabilities = extract_measurements(sr)
|
||||
overlay_measurements(image, measurements, probabilities)
|
||||
create_pdf("temp.png", measurements, sr, "temp.pdf")
|
||||
return create_dcm_pdf(sr, "temp.pdf",)
|
||||
@ -100,6 +100,7 @@ import pydicom
|
||||
sys.path.append(os.path.join(SCRIPT_DIR, '..'))
|
||||
import model
|
||||
import dicom_sr
|
||||
import dicom_sr_to_pdf
|
||||
|
||||
orthanc.LogWarning('Loading the RetinaNet model for mammography')
|
||||
my_retina_net = model.load_retina_net()
|
||||
@ -126,6 +127,7 @@ def execute_inference(output, uri, **request):
|
||||
output.SendHttpStatusCode(400)
|
||||
else:
|
||||
result = dicom_sr.apply(my_retina_net, dicom, minimum_score=0.2)
|
||||
pdf = dicom_sr_to_pdf.create(dicom.pixel_array, result)
|
||||
|
||||
with io.BytesIO() as f:
|
||||
pydicom.dcmwrite(f, result)
|
||||
@ -134,4 +136,11 @@ def execute_inference(output, uri, **request):
|
||||
|
||||
output.AnswerBuffer(orthanc.RestApiPost('/instances', content), 'application/json')
|
||||
|
||||
with io.BytesIO() as f:
|
||||
pydicom.dcmwrite(f, pdf)
|
||||
f.seek(0)
|
||||
content = f.read()
|
||||
|
||||
output.AnswerBuffer(orthanc.RestApiPost('/instances', content), 'application/json')
|
||||
|
||||
orthanc.RegisterRestCallback('/mammography-apply', execute_inference)
|
||||
|
||||
@ -1,7 +1,9 @@
|
||||
highdicom==0.22.0
|
||||
numpy==2.1.0
|
||||
numpy==1.24.0
|
||||
opencv-python==4.10.0.84
|
||||
pydicom==2.4.4
|
||||
torch==2.3.0
|
||||
torchaudio==2.3.0
|
||||
torchvision==0.18.0
|
||||
torch==2.4.0
|
||||
torchaudio==2.4.0
|
||||
torchvision==0.19.0
|
||||
reportlab==4.3.1
|
||||
matplotlib==3.10.0
|
||||
Loading…
x
Reference in New Issue
Block a user